Average-case complexity of shortest-paths problems
نویسنده
چکیده
We study both upper and lower bounds on the average-case complexity of shortestpaths algorithms. It is proved that the all-pairs shortest-paths problem on n-vertex networks can be solved in time O(n2 logn) with high probability with respect to various probability distributions on the set of inputs. Our results include the first theoretical analysis of the average behavior of shortest-paths algorithms with respect to the vertex-potential model, a family of probability distributions on complete networks with arbitrary real arc costs but without negative cycles. We also generalize earlier work with respect to the common uniform model, and we correct the analysis of an algorithm with respect to the endpoint-independent model. For the algorithm that solves the all-pairs shortest-paths problem on networks generated according to the vertex-potential model, a key ingredient is an algorithm that solves the single-source shortest-paths problem on such networks in time O(n) with high probability. All algorithms mentioned exploit that with high probability, the single-source shortest-paths problem can be solved correctly by considering only a rather sparse subset of the arc set. We prove a lower bound indicating the limitations of this approach. In a fairly general probabilistic model, any algorithm solving the single-source shortest-paths problem has to inspect Ω(n logn) arcs with high probability. Kurzzusammenfassung. In dieser Arbeit werden sowohl obere als auch untere Schranken für die average-case-Komplexität von Kürzeste-Wege-Algorithmen untersucht. Wir beweisen für verschiedene Wahrscheinlichkeitsverteilungen auf Netzwerken mit n Knoten, dass das all-pairs shortestpaths problem mit hoher Wahrscheinlichkeit in Zeit O(n2 logn) gelöst werden kann. Insbesondere können wir dieses Laufzeit für einen Algorithmus beweisen, dessen Eingaben gemäß des vertexpotential model erzeugt werden, einer Familie von Wahrscheinlichkeitsverteilungen auf vollständigen Netzwerke mit reellen Kantenkosten, die jedoch keine negative Kreise besitzen. Theoretische Ergebnisse für dieses Eingabemodell waren bislang nicht bekannt. Wir verallgemeinern außerdem frühere Arbeit bezüglich des uniform model und korrigieren die Laufzeit-Analyse eines Algorithmus bezüglich des endpoint-independent model. Der Algorithmus, der das all-pairs shortest-paths problem auf Netzwerken löst, die gemäß des vertex-potential model erzeugt werden, baut entscheidend darauf auf, dass wir auch einen Algorithmus entwickeln, der das single-source shortest-paths problem auf solchen Netzwerken mit hoher Wahrscheinlichkeit in Zeit O(n) löst. Alle bislang erwähnten Algorithmen nutzen aus, dass das single-source shortest-paths problem auch dann mit hoher Wahrscheinlichkeit korrekt gelöst werden kann, wenn wir nur einen Teil der Kantenmenge betrachten. Wir beweisen eine untere Schranke, die die Grenzen dieses Reduktionsansatzes belegt. Auf einer Klasse von Netzwerken mit ganzzahligen Kantenkosten muss jeder Algorithmus mit hoher Wahrscheinlichkeit Ω(n logn) Kanten inspizieren, um das single-source shortest-paths problem zu lösen.
منابع مشابه
Average-Case Complexity of Shortest-Paths Problems in the Vertex-Potential Model
We study the average-case complexity of shortest-paths problems in the vertexpotential model. The vertex-potential model is a family of probability distributions on complete directed graphs with arbitrary real edge lengths, but without negative cycles. We show that on a graph with n vertices and with respect to this model, the single-source shortest-paths problem can be solved in On2 expected...
متن کاملShortest Circular Paths on Planar Graphs
The shortest circular-path problem is similar to the ordinary shortest path problem, but instead of specifying a distinguished starting and end node, the path has to form a closed loop. This problem has several applications in optimization problems as they occur in image segmentation or shape matching. We propose a new algorithm to compute shortest circular paths on planar graphs that has a typ...
متن کاملSmoothed Analysis of Three Combinatorial Problems
Smoothed analysis combines elements over worst-case and average case analysis. For an instance x, the smoothed complexity is the average complexity of an instance obtained from x by a perturbation. The smoothed complexity of a problem is the worst smoothed complexity of any instance. Spielman and Teng introduced this notion for continuous problems. We apply the concept to combinatorial problems...
متن کاملComplexity Analysis of Real-Time Reinforcement Learning Applied to Finding Shortest Paths in Deterministic Domains
This report analyzes the complexity of on-line reinforcement learning algorithms, namely asynchronous real-time versions of Q-learning and value-iteration, applied to the problems of reaching any goal state from the given start state and nding shortest paths from all states to a goal state. Previous work had concluded that, in many cases, initially uninformed (i.e. tabula rasa) reinforcement le...
متن کاملNear-shortest and K-shortest simple paths
We describe a new algorithm for solving the problem of enumerating all nearshortest simple (loopless) s-t paths in a graph G = (V,E) with non-negative edge lengths. Letting n = |V | and m = |E|, the time per path enumerated is O(nS(n,m)) given a user-selected shortest-path subroutine with complexity O(S(n,m)). When coupled with binary search, this algorithm solves the corresponding K-shortest s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001